
1

2

Processor allocation was not a serious problem when we examined multiprocessor

systems (shared memory). In those systems, all processors had access to the same

image of the operating system and grabbed jobs from a common job queue. When a

quantum expired or a process blocked, it could be restarted by any available

processor.

 In multicomputer systems, things get more complex. We may not be able to use

shared memory segments or message queues to communicate with other processes.

The file system may look different on different machines. The overhead of dispatching

a process on another system may be high compared to the run time of the process.

3

Most of today’s environments have a nonmigratory model of processor
allocation. A processor is chosen by the user (e.g. by the workstation

being used or by an rsh command) or else the system makes an initial
decision on a system on which the process will execute. Once it starts,

it will continue running on that processor.

An alternative is to support process migration, where processes can
move dynamically during their lifetime. The hope in such a system is

that it will allow for better system-wide utilization of resources (e.g. as
one computer becomes too heavily loaded, some of the processes can

migrate to a less loaded system).

When we discuss implementing processor allocation, we are talking
about one of two types of processes: nonmigratory processes remain

on the processor on which they were created (the decision is where to
create them); migratory processes can be moved after creation, which
allows for better load balancing but is more complex.

4

If we are to run a process on an arbitrary system, it is important that all
systems present the same execution environment. Certainly system

binaries must be capable of executing on a different machine (unless
we use interpreted pseudocode such as Java). Processes typically do

not run in a vacuum but read input and write output. Even if a process
will never migrate to another machine during execution it should have
predictable access to a file system name space (it would be hard to

debug a program that opens a different file or fails to open a file
depending on what system it was assigned to). To accomplish this, any

of the files that a program will read/write should be on a distributed file
system that is set up to provide a uniform name space across all
participating machines. Moreover, the process may have to forward

operations on the standard input and standard output file descriptors to
the originating machine. This may be done during the creation of those

file descriptors on the remote machine using a mechanism such as
sockets (this is what rsh does).

With migratory processes, things get more complicated. If a running

process is to continue execution on a different system, any existing

descriptors to open files must continue to operate on those files (this
includes stdin, stdout, stderr as well as other files). If a process expects
to catch signals, the signal mask for the process should be migrated. If

there are any pending signals for the process, they also must be
migrated. Shared memory should continue to work if it was in use (this

will most likely necessitate a DSM system). Any existing network
connections should also continue to be active. Since a process may
rely on a service such as system time (to time latencies, for example),

clocks should be synchronized.

5

Three strategies for migration can be adopted.

The most thorough, and most complicated, is to move the entire system

state. This means that open file descriptors have to be reconstructed on

the remote system and the state of kernel objects such as signals,
message queues and semaphores has to be propagated. Mechanisms
should also exist for shared memory (if the os supports it) and sending

signals/messages across different machines. To implement this requires
a kernel that is capable of migrating this information as well as a global

process ID space.

6

A somewhat easier design, still requiring operating system kernel
modifications, is to maintain a concept of a “home” system. This is the

approach taken by the Berkeley Sprite operating system (which is built
from Berkeley Unix). The system on which a process is created is

considered its “home”. The operating system supports the invocation of
system calls through an operating-system-level remote procedure call
mechanism. When a process that has migrated issues a system call

(e.g. read, write, ioctl, get time of day), the operating system checks
whether this machine is the process’ home system or whether it has

migrated here. If it’s the home system, the call is processed locally. If
the process migrated from another system, any system call that needs
kernel state (such as file system operations) is forwarded to the home

system (which maintains state on behalf of that process). The system
call is processed on the home machine and results are returned to the

requestor via the remote procedure call.

7

Finally, the easiest design is to assume that there is little or no state that
deserves to be preserved. This is an approach taken by Condor, a

software package that provides process migration for Unix systems
without kernel changes. The assumption here is that there is no need

for any inter-process communication mechanism: processes know they
are running on a foreign system.

8

There are a number of different issues in constructing processes migration algorithms:

deterministic vs. heuristic

if we know all the resource usage up front, we can create a deterministic

algorithm. This data is usually unknown and heuristic techniques often have to

be employed.

Centralized, hierarchical, or distributed

a centralized algorithm allows all the information necessary for making

scheduling decisions to reside in one place but it can also put a heavy load on

the central machine. With a hierarchical system, we can have a number of

load managers, organized in a hierarchy. Managers make process allocation

decisions as far down the tree as possible, but may transfer processes from

one to another via a common ancester.

optimal vs. suboptimal

do we really want the best allocation or simply an acceptable one? If we want

the best allocation, we'll have to pay a price in the computation and data

needed to make that decision. Quite often it's not worth it.

local or global?

Does a machine decide whether a process stays on the local machine using

local information (its system load, for example) or does it rely on global

system state information? This is known as the transfer policy.

location policy

Does the machine send requests asking for help or does it send requests for

work to perform?

9

The up-down algorithm (Mutka and Livny, 1987) relies on a centralized
coordinator which maintains a usage table. This table contains one

entry per workstation. Workstations send messages containing updates
to this coordinator. All allocation decisions are based on the data in this

table.

The goal of the up-down algorithm is to give each workstation owner a
fair share of the available compute power (and not allow the user to

monopolize the environment).

When a system has to create a process, it first decides whether it

should run it locally or seek help. This is generally done in most
migration algorithms as an optimization (why seek help when you don't
need it?). If it decides to ask for help, it sends a message to the

coordinator asking for a processor.

The coordinator's table keeps points per workstation. If you run a

process on another machine, you get penalty points which are added
(n/second) to your entry in the usage table. If you have unsatisfied
requests pending, then points are subtracted from your entry. If no

requests are pending and no processors are used, your entry gradually
erodes to zero. Looking at the points for a given workstation, a positive

amount indicates that the workstation is a net user of resources and a
negative amount indicates that the workstation needs resources. The
coordinator simply chooses to process the request from the workstation

with the lowest score.

10

The centralized algorithm has the same pitfall that all centralized
algorithms share: scalability. A hierarchical processor allocation

algorithm attempts to overcome scalability while still maintaining
efficiency.

In this algorithm, every group of k workers gets a "manager" - a
coordinator responsible for processor allocation to machines within its
group.

Each manager keeps track of the approximate number of workers
below it that are available for work.

 In this case, it behaves like a centralized algorithm.

If, for some job, the manager does not have enough workers (worker
CPU cycles), it then passes the request to its manager (up the

hierarchy).

The upper manager checks with its subordinates (the pool of up to k

managers under it) for available workers.

If the request can be satisfied, it is parceled among the managers and,
ultimitely, among the workers.

If it cannot be satisfied, the second-level manager may contact a third-
level manager. The hierarchy can be extended ad infinitum.

11

Sender initiated distributed heuristic

This algorithm requires no coordinator whatsoever. If a machine decides that it should

not run its job locally, it picks a machine at random and sends it a probe message

("can you run my job?").

If the randomly selected machine cannot run the job, another machine is picked at

random and a probe sent to it.

The process is repeated until a willing machine is located or after n tries.

This algorithm has been shown to behave well and is stable. Its failing is when the

overall system load gets heavy. At those times, many machines in the network are

looping n times, sending requests to machines too busy to service them.

Receiver initiated distributed heuristic

To overcome the problem of traffic in loaded systems, we can do the opposite of a

sender initiated algorithm and have machines advertise themselves as being available

for work.

In this algorithm, when a processor is done with a process, it picks some random

machine and sends it a message: "do you have any work for me?”

If the machine responds in the affirmative, the sender gets a job.

If the machine has no work, the sender picks another machine and tries again, doing

this n times. Eventually, the sender will go to sleep and then start the whole process

again until it gets work.

While this creates a lot of messages, there is no extra load on the system during

critical times.

12

13

